【答案】
用1.2.3.4.5组成不含重复数字的六位数,图片,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有:
a1+a3+a5-a2-a4-a6=11k (*)
也就是:
a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)
15=0+1+2+3+4+5=11k+2(a2+a4+a6) (**)
由此看出k只能是奇数
由(*)式看出,0≤k<2 ,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.
但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立.
对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.
根据上述分析知:用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数.
点击查看万博体育app::六年级万博体育app试题及答案
奥数网提醒:
单元试题、各科教案、奥数练习题
尽在“奥数网”微信公众号